Section 2.5 Implicit Differentiation

Implicit and Explicit Functions

Up to this point in the text, most functions have been expressed in **explicit form.** For example, in the equation

$$y = 3x^2 - 5$$
 Explicit form

the variable y is explicitly written as a function of x. Some functions, however, are only implied by an equation. For instance, the function y = 1/x is defined **implicitly** by the equation xy = 1. Suppose you were asked to find dy/dx for this equation. You could begin by writing y explicitly as a function of x and then differentiating.

Implicit Form Explicit Form Derivative

$$xy = 1 y = \frac{1}{x} = x^{-1} \frac{dy}{dx} = -x^{-2} = -\frac{1}{x^2}$$

This strategy works whenever you can solve for the function explicitly. You cannot, however, use this procedure when you are unable to solve for y as a function of x. For instance, how would you find dy/dx for the equation

$$x^2 - 2y^3 + 4y = 2$$

where it is very difficult to express y as a function of x explicitly? To do this, you can use **implicit differentiation.**

To understand how to find dy/dx implicitly, you must realize that the differentiation is taking place with respect to x. This means that when you differentiate terms involving x alone, you can differentiate as usual. However, when you differentiate terms involving y, you must apply the Chain Rule, because you are assuming that y is defined implicitly as a differentiable function of x.

Ex.1 Differentiating with Respect to *x*.

a.
$$\frac{d}{dx}[x^3] = 3x^2$$
 Variables agree: use Simple Power Rule. Variables agree

b.
$$\frac{d}{dx}[y^3] = 3y^2 \frac{dy}{dx}$$
 Variables disagree: use Chain Rule.

Variables disagree

c.
$$\frac{d}{dx}[x+3y] = 1 + 3\frac{dy}{dx}$$
 Chain Rule: $\frac{d}{dx}[3y] = 3y'$
d. $\frac{d}{dx}[xy^2] = x\frac{d}{dx}[y^2] + y^2\frac{d}{dx}[x]$ Product Rule

$$= x \left(2y \frac{dy}{dx}\right) + y^2(1)$$
 Chain Rule
$$= 2xy \frac{dy}{dx} + y^2$$
 Simplify.

Section 2.5 Implicit Differentiation

Implicit and Explicit Functions

Up to this point in the text, most functions have been expressed in **explicit form.** For example, in the equation

$$y = 3x^2 - 5$$
 Explicit form

the variable y is explicitly written as a function of x. Some functions, however, are only implied by an equation. For instance, the function y = 1/x is defined **implicitly** by the equation xy = 1. Suppose you were asked to find dy/dx for this equation. You could begin by writing y explicitly as a function of x and then differentiating.

Implicit Form Explicit Form Derivative

$$xy = 1 y = \frac{1}{x} = x^{-1} \frac{dy}{dx} = -x^{-2} = -\frac{1}{x^2}$$

This strategy works whenever you can solve for the function explicitly. You cannot, however, use this procedure when you are unable to solve for y as a function of x. For instance, how would you find dy/dx for the equation

$$x^2 - 2y^3 + 4y = 2$$

where it is very difficult to express y as a function of x explicitly? To do this, you can use **implicit differentiation.**

To understand how to find dy/dx implicitly, you must realize that the differentiation is taking place with respect to x. This means that when you differentiate terms involving x alone, you can differentiate as usual. However, when you differentiate terms involving y, you must apply the Chain Rule, because you are assuming that y is defined implicitly as a differentiable function of x.

Ex.1 Differentiating with Respect to *x*.

a.
$$\frac{d}{dx}[x^3] = 3x^2$$
 Variables agree: use Simple Power Rule. Variables agree

b.
$$\frac{d}{dx}[y^3] = 3y^2 \frac{dy}{dx}$$
 Variables disagree: use Chain Rule.

Variables disagree

c.
$$\frac{d}{dx}[x+3y] = 1 + 3\frac{dy}{dx}$$
 Chain Rule: $\frac{d}{dx}[3y] = 3y'$
d. $\frac{d}{dx}[xy^2] = x\frac{d}{dx}[y^2] + y^2\frac{d}{dx}[x]$ Product Rule

$$= x \left(2y \frac{dy}{dx}\right) + y^2(1)$$
 Chain Rule
$$= 2xy \frac{dy}{dx} + y^2$$
 Simplify.

Section 2.5 Implicit Differentiation

Implicit and Explicit Functions

Up to this point in the text, most functions have been expressed in **explicit form.** For example, in the equation

$$y = 3x^2 - 5$$
 Explicit form

the variable y is explicitly written as a function of x. Some functions, however, are only implied by an equation. For instance, the function y = 1/x is defined **implicitly** by the equation xy = 1. Suppose you were asked to find dy/dx for this equation. You could begin by writing y explicitly as a function of x and then differentiating.

Implicit Form Explicit Form Derivative
$$y = \frac{1}{x} = x^{-1} \qquad \frac{dy}{dx} = -x^{-2} = -\frac{1}{x^2}$$

This strategy works whenever you can solve for the function explicitly. You cannot, however, use this procedure when you are unable to solve for y as a function of x. For instance, how would you find dy/dx for the equation

$$x^2 - 2y^3 + 4y = 2$$

where it is very difficult to express y as a function of x explicitly? To do this, you can use **implicit differentiation.**

To understand how to find dy/dx implicitly, you must realize that the differentiation is taking place with respect to x. This means that when you differentiate terms involving x alone, you can differentiate as usual. However, when you differentiate terms involving y, you must apply the Chain Rule, because you are assuming that y is defined implicitly as a differentiable function of x.

Ex.1 Differentiating with Respect to *x*.

b.
$$\frac{d}{dx}[y^3] = 3y^2 \frac{dy}{dx}$$
 Variables disagree: use Chain Rule.

Variables disagree $4x + 3 \cdot dx$

c.
$$\frac{d}{dx}[x + 3y] = 1 + 3\frac{dy}{dx}$$
 Chain Rule: $\frac{d}{dx}[3y] = 3y'$

d.
$$\frac{d}{dx}[xy^2] = x \frac{d}{dx}[y^2] + y^2 \frac{d}{dx}[x]$$
 Product Rule
$$= x \left(2y \frac{dy}{dx}\right) + y^2(1)$$
 Chain Rule
$$= 2xy \frac{dy}{dx} + y^2$$
 Simplify.

Guidelines for Implicit Differentiation

- 1. Differentiate both sides of the equation with respect to x.
- 2. Collect all terms involving dy/dx on the left side of the equation and move all other terms to the right side of the equation.
- **3.** Factor dy/dx out of the left side of the equation.
- **4.** Solve for dy/dx.

Ex.2 Find
$$\frac{dy}{dx}$$
, given that $2x^3 + 3y^3 = 64$.

$$\frac{d}{dx} \left[2x^3 + 3y^3 \right] = \frac{d}{dx} \left[64 \right]$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$2 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}{dx} \left[3 + 3 \cdot \frac{d}{dx} \right] = 0$$

$$3 \cdot \frac{d}$$

Ex.3 Find
$$\frac{dy}{dx}$$
, given that $x^2y + y^2x = -2$.

$$\frac{d}{dx}(x^2y + y^2x) = \frac{d}{dx}(2)$$

$$\frac{d}{dx}(x^2y) + \frac{d}{dx}(y^2x) = 0$$

$$x^2 \cdot \frac{d}{dx}(y) + \frac{d}{dx}(y^2x) + y^2 \cdot \frac{d}{dx}(y^2) = 0$$

$$x^2 \cdot \frac{dy}{dx} + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) + x \cdot \frac{d}{dx}(y^2) = 0$$

$$x^2 \cdot \frac{dy}{dx} + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) + x \cdot 2y \cdot \frac{dy}{dx} = 0$$

$$x^2 \cdot \frac{dy}{dx} + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) = 0$$

$$x^2 \cdot \frac{dy}{dx} + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) = 0$$

$$x^2 \cdot \frac{dy}{dx} + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) = 0$$

$$x^2 \cdot \frac{dy}{dx} + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) = 0$$

$$x^2 \cdot \frac{dy}{dx} + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) + \frac{d}{dx}(2x) = 0$$

$$x^2 \cdot \frac{dy}{dx} + \frac{d}{dx}(2x) + \frac{$$

Ex.4 Find $\frac{dy}{dx}$ and evaluate the derivative at (2,2), given that $y^3 - x^2 = 4$.

$$\frac{d}{dx}(y^3-x^2) = \frac{d}{dx}[4]$$

$$\frac{d}{dx}(y^3) - \frac{d}{dx}(x^2) = 0$$

$$3y^2 \cdot \frac{dy}{dx} - 2x = 0$$

$$3y^2 \cdot \frac{dy}{dx} = 2x$$

$$\frac{2x}{3y^2}$$

$$\frac{dy}{dx} = \frac{2x}{3y^2}$$

$$\frac{dy}{dx} = \frac{2(2)}{3(2)^{2}}$$

$$M_{tay} = \frac{2 \cdot 2}{2 \cdot 2 \cdot 3}$$

$$M_{tay} = \frac{1}{2 \cdot 2 \cdot 3}$$

$$M_{tay} = \frac{1}{3} = \frac{dy}{dx} \Big|_{(2,2)}$$

$$y - y_{1} = m_{tay} (x - x_{1})$$

$$y - (2) = \frac{1}{3} (x - (2))$$

$$2 + y - 2 = \frac{1}{3} x + \frac{1}{3}$$

$$y = \frac{1}{3} x + \frac{1}{3}$$

$$y-y, = M_{TAN}(x-x_i)$$

Ex.5 Find the equation of the tangent line to the graph of $x^3 + y^3 - 6xy = 0$ at $\left(\frac{4}{3}, \frac{8}{3}\right)$.

$$y-y_1=m_{TAN}(x-x_1)$$

$$9-(\frac{9}{3})=(\frac{4}{5})[x-(\frac{4}{5})]$$

$$y - \frac{8}{3} = \frac{4}{5}x - \frac{16}{15}$$

$$\frac{d}{dx} \left(x^3 + y^3 - 6xy \right) = \frac{d}{dx} \left[0 \right]$$

$$\frac{d}{dx}[x^3] + \frac{d}{dx}[y^3] - 6 \cdot \frac{d}{dx}[xy] = 0$$

$$3x^{2} + 3y^{2} + -6[x \cdot \frac{d(y)}{dx} + y \cdot \frac{d(x)}{dx}] = 0$$

$$3x^2 + 3y^2 \cdot \frac{dy}{dx} - 6x \cdot \frac{dy}{dx} - 6y = 0$$

$$3y^2 \cdot dy = 6x \cdot dy = 6y - 3x^2$$

$$\frac{dy}{dx} \left[3y^2 - 6x \right] = \frac{6y - 3x^2}{3y^2 - 6x}$$

$$\frac{dy}{dx} = \frac{3 \cdot (2y - x^2)}{3 \cdot (y^2 - 2x)}$$

$$\frac{dy}{dy} = \frac{2y - x^2}{3 \cdot (y^2 - 2x)}$$

$$\frac{dy}{dx} = \frac{2(\frac{x}{3}) - (\frac{4}{3})^{2}}{(\frac{x}{3})^{2} - 2(\frac{x}{3})} = \frac{(\frac{6}{3})^{2} - 2(\frac{x}{3})}{(\frac{6}{3})^{2} - 2(\frac{x}{3})} = \frac{(\frac{6}{3})^{2} - 2(\frac{x}{3})^{2}}{(\frac{6}{3})^{2} - 2(\frac{x}{3})} = \frac{(\frac{6}{3})^{2} - 2(\frac{x}{3})^{2}}{(\frac{6}{3})^{2} - 2(\frac{x}{3})^{2}} = \frac{(\frac{6}{3})^{2}}{(\frac{6}{3})^{2}} = \frac{(\frac{6}{3})^{2} - 2(\frac{x}{3})^{2}}{(\frac{6}{3})^{2}} = \frac{(\frac{6}{3})^{2}}{(\frac{6}{3})^{2}} = \frac{(\frac{6}{3})^{2}}{(\frac{6}{3})^{2$$

Ex.6 Find
$$\frac{d^2y}{dx^2}$$
, given that $x^2 - y^2 = 36$.

$$\frac{d}{dx} \left(x^2 - y^2 \right) = \frac{d}{dx} \left[36 \right]$$

$$\frac{d}{dx}(x^{2}) - \frac{d}{dx}(y^{2}) = 0$$

$$2x - 2y \cdot \frac{dy}{dx} = 0$$

$$2x = 2y \cdot \frac{dy}{dx}$$

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{x}{y}\right)$$

$$\frac{d^{2}y}{dx^{2}} = \frac{y \cdot dx}{y^{2}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{y \cdot dx}{y^{2}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{y - x \cdot (\frac{x}{y})}{y^{2}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{y - x^{2}}{y^{2}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{y^{2} - x^{2}}{y^{3}}$$

$$(x+y)^3 = x^3 + y^3$$

$$\frac{d}{dx}\left[\left(x+y^3\right)^2 - \frac{d}{dx}\left[x^3+y^3\right]$$

$$3(x+y)^{2}d(x+y) = d(x^{3}) + d(y^{3})$$

$$\frac{dx}{dx}$$

$$\frac{dx}{dx}$$

$$3(x+y)^{2} \cdot \left(\frac{dx}{dx} + \frac{dy}{dx}\right)^{2} - 3x^{2} + 3y^{2} \cdot \frac{dy}{dx}$$

$$3(x+y)^{2} \cdot \left(1 + \frac{dy}{dx}\right)^{2} - 3x^{2} + 3y^{2} \cdot \frac{dy}{dx}$$

$$3(x+y)^{2} + 3(x+y)^{2} \cdot dy = 3x^{2} + 3y^{2} \cdot dy$$

 $3(x+y)^{2} - 3x^{2} = 3y^{2} \cdot dy - 3(x+y)^{2} \cdot dy$

$$3(x+y)^2-3x^2 = \frac{8y}{dx} \left[3y^2 - 3(x+y)^2 \right]$$

$$\frac{3(x+y)^{2}-3x^{2}}{3y^{2}-3(x+y)^{2}} = \frac{dy}{dx}$$

$$\frac{3((x+y)^{2}-x^{2})}{3(y^{2}-(x+y)^{2})} = \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{(-1+1)^{2} - (-1)^{2}}{(-1+1)^{2}}$$

$$= -1$$

$$\frac{dy}{(-1+1)^{2}} - (-1+1)^{2}$$

Ex.6 Find $\frac{d^2y}{dx^2}$, given that $x^2 - y^2 = 36$.

Ex.6 Find $\frac{d^2y}{dx^2}$, given that $x^2 - y^2 = 36$.

Ex.6 Find $\frac{d^2y}{dx^2}$, given that $x^2 - y^2 = 36$.

