Math 150, Lecture Notes- Bonds Name

Section 2.5 Implicit Differentiation
Implicit and Explicit Functions

Up to this point in the text, most functions have been expressed in explicit form. For
example, in the equation

y = 3x2 -5 Explicit form

the variable y is explicitly written as a function of x. Some functions, however, are
only implied by an equation. For instance, the function y = 1/x is defined implicitly
by the equation xy = 1. Suppose you were asked to find dy/dx for this equation. You
could begin by writing y explicitly as a function of x and then differentiating.

Implicit Form Explicit Form Derivative
1 dy 1
X = 1 = —_— = x_l —_— _x_2 e
Y YT dx x?

This strategy works whenever you can solve for the function explicitly. You cannot,
however, use this procedure when you are unable to solve for y as a function of x. For
instance, how would you find dy/dx for the equation

x2=2y3 +4y=2

where it is very difficult to express y as a function of x explicitly? To do this, you can
use implicit differentiation.

To understand how to find dy/dx implicitly, you must realize that the differentia-
tion is taking place with respect to x. This means that when you differentiate terms
involving x alone, you can differentiate as usual. However, when you differentiate
terms involving y, you must apply the Chain Rule, because you are assuming that y is
defined implicitly as a differentiable function of x.

Ex.1 Differentiating with Respect to x.
d

a. d—[,\‘3:| = 3x? Variables agree: use Simple Power Rule.
X
N
Variables agree
u" nu~ ' u’
e et Yt
dros , dy . . .
b. —[\] = 3y - Variables disagree: use Chain Rule.
dx ™ dx
%
Variables disagree
d dy d
c. —|[x+3y|=1+3— Chain Rule: —[3y] = 3y’
Jolx 3] e S [31=3
d d d
d. —[xy?] = x—[y?] + y>—[x Product Rule
Syl = [yl 4yl
dy)
= x| 2y— ] + y*(1 Chain Rule
( v Ty
d
= 2xy 4 + y? Simplify.

dx
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Guidelines for Implicit Differentiation

1. Differentiate both sides of the equation with respect to x.

2. Collect all terms involving dy/dx on the left side of the equation and move all
other terms to the right side of the equation.

3. Factor dy/dx out of the left side of the equation.
4. Solve for dy/dx.

Ex.2 Find Z—Z, given that 2x3 + 3y3 =64.
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Ex.3 Find Z—Z, given that x2y + yzx =-2.
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Ex.4 Find % and evaluate the derivative at (2, 2), given that y3 —x2=4.
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Ex.5 Find the equation of the tangent line to the graph of x3 + y3 — 6xy =0 at (%ng
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Ex.6 Fin
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